Android是消息驱动的,实现消息驱动有几个要素:
- 消息的表示:Message
- 消息队列:MessageQueue
- 消息循环,用于循环取出消息进行处理:Looper
- 消息处理,消息循环从消息队列中取出消息后要对消息进行处理:Handler
平时我们最常使用的就是Message与Handler了,如果使用过HandlerThread或者自己实现类似HandlerThread的东西可能还会接触到Looper,而MessageQueue是Looper内部使用的,对于标准的SDK,我们是无法实例化并使用的(构造函数是包可见性)。
我们平时接触到的Looper、Message、Handler都是用JAVA实现的,Android做为基于Linux的系统,底层用C、C++实现的,而且还有NDK的存在,消息驱动的模型怎么可能只存在于JAVA层,实际上,在Native层存在与Java层对应的类如Looper、MessageQueue等。
初始化消息队列
首先来看一下如果一个线程想实现消息循环应该怎么做,以HandlerThread为例:
public void run() { mTid = Process.myTid(); Looper.prepare(); synchronized (this) { mLooper = Looper.myLooper(); notifyAll(); } Process.setThreadPriority(mPriority); onLooperPrepared(); Looper.loop(); mTid = -1; }
主要是红色标明的两句,首先调用prepare初始化MessageQueue与Looper,然后调用loop进入消息循环。先看一下Looper.prepare。
public static void prepare() { prepare(true); } private static void prepare(boolean quitAllowed) { if (sThreadLocal.get() != null) { throw new RuntimeException("Only one Looper may be created per thread"); } sThreadLocal.set(new Looper(quitAllowed)); }
重载函数,quitAllowed默认为true,从名字可以看出来就是消息循环是否可以退出,默认是可退出的,Main线程(UI线程)初始化消息循环时会调用prepareMainLooper,传进去的是false。使用了ThreadLocal,每个线程可以初始化一个Looper。
再来看一下Looper在初始化时都做了什么:
private Looper(boolean quitAllowed) { mQueue = new MessageQueue(quitAllowed); mRun = true; mThread = Thread.currentThread(); } MessageQueue(boolean quitAllowed) { mQuitAllowed = quitAllowed; nativeInit(); }
在Looper初始化时,新建了一个MessageQueue的对象保存了在成员mQueue中。MessageQueue的构造函数是包可见性,所以我们是无法直接使用的,在MessageQueue初始化的时候调用了nativeInit,这是一个Native方法:
static void android_os_MessageQueue_nativeInit(JNIEnv* env, jobject obj) { NativeMessageQueue* nativeMessageQueue = new NativeMessageQueue(); if (!nativeMessageQueue) { jniThrowRuntimeException(env, "Unable to allocate native queue"); return; } nativeMessageQueue->incStrong(env); android_os_MessageQueue_setNativeMessageQueue(env, obj, nativeMessageQueue); } static void android_os_MessageQueue_setNativeMessageQueue(JNIEnv* env, jobject messageQueueObj, NativeMessageQueue* nativeMessageQueue) { env->SetIntField(messageQueueObj, gMessageQueueClassInfo.mPtr, reinterpret_cast<jint>(nativeMessageQueue)); }
在nativeInit中,new了一个Native层的MessageQueue的对象,并将其地址保存在了Java层MessageQueue的成员mPtr中,Android中有好多这样的实现,一个类在Java层与Native层都有实现,通过JNI的GetFieldID与SetIntField把Native层的类的实例地址保存到Java层类的实例的mPtr成员中,比如Parcel。
再看NativeMessageQueue的实现:
NativeMessageQueue::NativeMessageQueue() : mInCallback(false), mExceptionObj(NULL) { mLooper = Looper::getForThread(); if (mLooper == NULL) { mLooper = new Looper(false); Looper::setForThread(mLooper); } }
在NativeMessageQueue的构造函数中获得了一个Native层的Looper对象,Native层的Looper也使用了线程本地存储,注意new Looper时传入了参数false。
Looper::Looper(bool allowNonCallbacks) : mAllowNonCallbacks(allowNonCallbacks), mSendingMessage(false), mResponseIndex(0), mNextMessageUptime(LLONG_MAX) { int wakeFds[2]; int result = pipe(wakeFds); LOG_ALWAYS_FATAL_IF(result != 0, "Could not create wake pipe. errno=%d", errno); mWakeReadPipeFd = wakeFds[0]; mWakeWritePipeFd = wakeFds[1]; result = fcntl(mWakeReadPipeFd, F_SETFL, O_NONBLOCK); LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake read pipe non-blocking. errno=%d", errno); result = fcntl(mWakeWritePipeFd, F_SETFL, O_NONBLOCK); LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake write pipe non-blocking. errno=%d", errno); // Allocate the epoll instance and register the wake pipe. mEpollFd = epoll_create(EPOLL_SIZE_HINT); LOG_ALWAYS_FATAL_IF(mEpollFd < 0, "Could not create epoll instance. errno=%d", errno); struct epoll_event eventItem; memset(& eventItem, 0, sizeof(epoll_event)); // zero out unused members of data field union eventItem.events = EPOLLIN; eventItem.data.fd = mWakeReadPipeFd; result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeReadPipeFd, & eventItem); LOG_ALWAYS_FATAL_IF(result != 0, "Could not add wake read pipe to epoll instance. errno=%d", errno); }
Native层的Looper使用了epoll。初始化了一个管道,用mWakeWritePipeFd与mWakeReadPipeFd分别保存了管道的写端与读端,并监听了读端的EPOLLIN事件。注意下初始化列表的值,mAllowNonCallbacks的值为false。
mAllowNonCallback是做什么的?使用epoll仅为了监听mWakeReadPipeFd的事件?其实Native Looper不仅可以监听这一个描述符,Looper还提供了addFd方法:
int addFd(int fd, int ident, int events, ALooper_callbackFunc callback, void* data); int addFd(int fd, int ident, int events, const sp<LooperCallback>& callback, void* data);
fd表示要监听的描述符。ident表示要监听的事件的标识,值必须>=0或者为ALOOPER_POLL_CALLBACK(-2),event表示要监听的事件,callback是事件发生时的回调函数,mAllowNonCallbacks的作用就在于此,当mAllowNonCallbacks为true时允许callback为NULL,在pollOnce中ident作为结果返回,否则不允许callback为空,当callback不为NULL时,ident的值会被忽略。还是直接看代码方便理解:
int Looper::addFd(int fd, int ident, int events, const sp<LooperCallback>& callback, void* data) { #if DEBUG_CALLBACKS ALOGD("%p ~ addFd - fd=%d, ident=%d, events=0x%x, callback=%p, data=%p", this, fd, ident, events, callback.get(), data); #endif if (!callback.get()) { if (! mAllowNonCallbacks) { ALOGE("Invalid attempt to set NULL callback but not allowed for this looper."); return -1; } if (ident < 0) { ALOGE("Invalid attempt to set NULL callback with ident < 0."); return -1; } } else { ident = ALOOPER_POLL_CALLBACK; } int epollEvents = 0; if (events & ALOOPER_EVENT_INPUT) epollEvents |= EPOLLIN; if (events & ALOOPER_EVENT_OUTPUT) epollEvents |= EPOLLOUT; { // acquire lock AutoMutex _l(mLock); Request request; request.fd = fd; request.ident = ident; request.callback = callback; request.data = data; struct epoll_event eventItem; memset(& eventItem, 0, sizeof(epoll_event)); // zero out unused members of data field union eventItem.events = epollEvents; eventItem.data.fd = fd; ssize_t requestIndex = mRequests.indexOfKey(fd); if (requestIndex < 0) { int epollResult = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, fd, & eventItem); if (epollResult < 0) { ALOGE("Error adding epoll events for fd %d, errno=%d", fd, errno); return -1; } mRequests.add(fd, request); } else { int epollResult = epoll_ctl(mEpollFd, EPOLL_CTL_MOD, fd, & eventItem); if (epollResult < 0) { ALOGE("Error modifying epoll events for fd %d, errno=%d", fd, errno); return -1; } mRequests.replaceValueAt(requestIndex, request); } } // release lock return 1; }
如果callback为空会检查mAllowNonCallbacks看是否允许callback为空,如果允许callback为空还会检测ident是否>=0。如果callback不为空会把ident的值赋值为ALOOPER_POLL_CALLBACK,不管传进来的是什么值。
接下来把传进来的参数值封装到一个Request结构体中,并以描述符为键保存到一个KeyedVector mRequests中,然后通过epoll_ctl添加或替换(如果这个描述符之前有调用addFD添加监听)对这个描述符事件的监听。
类图:
发送消息
通过Looper.prepare初始化好消息队列后就可以调用Looper.loop进入消息循环了,然后我们就可以向消息队列发送消息,消息循环就会取出消息进行处理,在看消息处理之前,先看一下消息是怎么被添加到消息队列的。
在Java层,Message类表示一个消息对象,要发送消息首先就要先获得一个消息对象,Message类的构造函数是public的,但是不建议直接new Message,Message内部保存了一个缓存的消息池,我们可以用obtain从缓存池获得一个消息,Message使用完后系统会调用recycle回收,如果自己new很多Message,每次使用完后系统放入缓存池,会占用很多内存的,如下所示:
public static Message obtain() { synchronized (sPoolSync) { if (sPool != null) { Message m = sPool; sPool = m.next; m.next = null; sPoolSize--; return m; } } return new Message(); } public void recycle() { clearForRecycle(); synchronized (sPoolSync) { if (sPoolSize < MAX_POOL_SIZE) { next = sPool; sPool = this; sPoolSize++; } } }
Message内部通过next成员实现了一个链表,这样sPool就了为了一个Messages的缓存链表。
消息对象获取到了怎么发送呢,大家都知道是通过Handler的post、sendMessage等方法,其实这些方法最终都是调用的同一个方法sendMessageAtTime:
public boolean sendMessageAtTime(Message msg, long uptimeMillis) { MessageQueue queue = mQueue; if (queue == null) { RuntimeException e = new RuntimeException( this + " sendMessageAtTime() called with no mQueue"); Log.w("Looper", e.getMessage(), e); return false; } return enqueueMessage(queue, msg, uptimeMillis); }
sendMessageAtTime获取到消息队列然后调用enqueueMessage方法,消息队列mQueue是从与Handler关联的Looper获得的。
private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) { msg.target = this; if (mAsynchronous) { msg.setAsynchronous(true); } return queue.enqueueMessage(msg, uptimeMillis); }
enqueueMessage将message的target设置为当前的handler,然后调用MessageQueue的enqueueMessage,在调用queue.enqueueMessage之前判断了mAsynchronous,从名字看是异步消息的意思,要明白Asynchronous的作用,需要先了解一个概念Barrier。
Barrier与Asynchronous Message
Barrier是什么意思呢,从名字看是一个拦截器,在这个拦截器后面的消息都暂时无法执行,直到这个拦截器被移除了,MessageQueue有一个函数叫enqueueSyncBarier可以添加一个Barrier。
int enqueueSyncBarrier(long when) { // Enqueue a new sync barrier token. // We don't need to wake the queue because the purpose of a barrier is to stall it. synchronized (this) { final int token = mNextBarrierToken++; final Message msg = Message.obtain(); msg.arg1 = token; Message prev = null; Message p = mMessages; if (when != 0) { while (p != null && p.when <= when) { prev = p; p = p.next; } } if (prev != null) { // invariant: p == prev.next msg.next = p; prev.next = msg; } else { msg.next = p; mMessages = msg; } return token; } }
在enqueueSyncBarrier中,obtain了一个Message,并设置msg.arg1=token,token仅是一个每次调用enqueueSyncBarrier时自增的int值,目的是每次调用enqueueSyncBarrier时返回唯一的一个token,这个Message同样需要设置执行时间,然后插入到消息队列,特殊的是这个Message没有设置target,即msg.target为null。
进入消息循环后会不停地从MessageQueue中取消息执行,调用的是MessageQueue的next函数,其中有这么一段:
Message msg = mMessages; if (msg != null && msg.target == null) { // Stalled by a barrier. Find the next asynchronous message in the queue. do { prevMsg = msg; msg = msg.next; } while (msg != null && !msg.isAsynchronous()); }
如果队列头部的消息的target为null就表示它是个Barrier,因为只有两种方法往mMessages中添加消息,一种是enqueueMessage,另一种是enqueueBarrier,而enqueueMessage中如果mst.target为null是直接抛异常的,后面会看到。
所谓的异步消息其实就是这样的,我们可以通过enqueueBarrier往消息队列中插入一个Barrier,那么队列中执行时间在这个Barrier以后的同步消息都会被这个Barrier拦截住无法执行,直到我们调用removeBarrier移除了这个Barrier,而异步消息则没有影响,消息默认就是同步消息,除非我们调用了Message的setAsynchronous,这个方法是隐藏的。只有在初始化Handler时通过参数指定往这个Handler发送的消息都是异步的,这样在Handler的enqueueMessage中就会调用Message的setAsynchronous设置消息是异步的,从上面Handler.enqueueMessage的代码中可以看到。
所谓异步消息,其实只有一个作用,就是在设置Barrier时仍可以不受Barrier的影响被正常处理,如果没有设置Barrier,异步消息就与同步消息没有区别,可以通过removeSyncBarrier移除Barrier:
void removeSyncBarrier(int token) { // Remove a sync barrier token from the queue. // If the queue is no longer stalled by a barrier then wake it. final boolean needWake; synchronized (this) { Message prev = null; Message p = mMessages; while (p != null && (p.target != null || p.arg1 != token)) { prev = p; p = p.next; } if (p == null) { throw new IllegalStateException("The specified message queue synchronization " + " barrier token has not been posted or has already been removed."); } if (prev != null) { prev.next = p.next; needWake = false; } else { mMessages = p.next; needWake = mMessages == null || mMessages.target != null; } p.recycle(); } if (needWake) { nativeWake(mPtr); } }
参数token就是enqueueSyncBarrier的返回值,如果没有调用指定的token不存在是会抛异常的。
enqueueMessage
接下来看一下是怎么MessageQueue的enqueueMessage。
final boolean enqueueMessage(Message msg, long when) { if (msg.isInUse()) { throw new AndroidRuntimeException(msg + " This message is already in use."); } if (msg.target == null) { throw new AndroidRuntimeException("Message must have a target."); } boolean needWake; synchronized (this) { if (mQuiting) { RuntimeException e = new RuntimeException( msg.target + " sending message to a Handler on a dead thread"); Log.w("MessageQueue", e.getMessage(), e); return false; } msg.when = when; Message p = mMessages; if (p == null || when == 0 || when < p.when) { // New head, wake up the event queue if blocked. msg.next = p; mMessages = msg; needWake = mBlocked; } else { // Inserted within the middle of the queue. Usually we don't have to wake // up the event queue unless there is a barrier at the head of the queue // and the message is the earliest asynchronous message in the queue. needWake = mBlocked && p.target == null && msg.isAsynchronous(); Message prev; for (;;) { prev = p; p = p.next; if (p == null || when < p.when) { break; } if (needWake && p.isAsynchronous()) { needWake = false; } } msg.next = p; // invariant: p == prev.next prev.next = msg; } } if (needWake) { nativeWake(mPtr); } return true; }
注意上面代码红色的部分,当msg.target为null时是直接抛异常的。
在enqueueMessage中首先判断,如果当前的消息队列为空,或者新添加的消息的执行时间when是0,或者新添加的消息的执行时间比消息队列头的消息的执行时间还早,就把消息添加到消息队列头(消息队列按时间排序),否则就要找到合适的位置将当前消息添加到消息队列。
Native发送消息
消息模型不只是Java层用的,Native层也可以用,前面也看到了消息队列初始化时也同时初始化了Native层的Looper与NativeMessageQueue,所以Native层应该也是可以发送消息的。与Java层不同的是,Native层是通过Looper发消息的,同样所有的发送方法最终是调用sendMessageAtTime:
void Looper::sendMessageAtTime(nsecs_t uptime, const sp<MessageHandler>& handler, const Message& message) { #if DEBUG_CALLBACKS ALOGD("%p ~ sendMessageAtTime - uptime=%lld, handler=%p, what=%d", this, uptime, handler.get(), message.what); #endif size_t i = 0; { // acquire lock AutoMutex _l(mLock); size_t messageCount = mMessageEnvelopes.size(); while (i < messageCount && uptime >= mMessageEnvelopes.itemAt(i).uptime) { i += 1; } MessageEnvelope messageEnvelope(uptime, handler, message); mMessageEnvelopes.insertAt(messageEnvelope, i, 1); // Optimization: If the Looper is currently sending a message, then we can skip // the call to wake() because the next thing the Looper will do after processing // messages is to decide when the next wakeup time should be. In fact, it does // not even matter whether this code is running on the Looper thread. if (mSendingMessage) { return; } } // release lock // Wake the poll loop only when we enqueue a new message at the head. if (i == 0) { wake(); } }
Native Message只有一个int型的what字段用来区分不同的消息,sendMessageAtTime指定了Message,Message要执行的时间when,与处理这个消息的Handler:MessageHandler,然后用MessageEnvelope封装了time, MessageHandler与Message,Native层发的消息都保存到了mMessageEnvelopes中,mMessageEnvelopes是一个Vector<MessageEnvelope>。Native层消息同样是按时间排序,与Java层的消息分别保存在两个队列里。
消息循环
消息队列初始化好了,也知道怎么发消息了,下面就是怎么处理消息了,看Handler.loop函数:
public static void loop() { final Looper me = myLooper(); if (me == null) { throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread."); } final MessageQueue queue = me.mQueue; // Make sure the identity of this thread is that of the local process, // and keep track of what that identity token actually is. Binder.clearCallingIdentity(); final long ident = Binder.clearCallingIdentity(); for (;;) { Message msg = queue.next(); // might block if (msg == null) { // No message indicates that the message queue is quitting. return; } // This must be in a local variable, in case a UI event sets the logger Printer logging = me.mLogging; if (logging != null) { logging.println(">>>>> Dispatching to " + msg.target + " " + msg.callback + ": " + msg.what); } msg.target.dispatchMessage(msg); if (logging != null) { logging.println("<<<<< Finished to " + msg.target + " " + msg.callback); } // Make sure that during the course of dispatching the // identity of the thread wasn't corrupted. final long newIdent = Binder.clearCallingIdentity(); if (ident != newIdent) { Log.wtf(TAG, "Thread identity changed from 0x" + Long.toHexString(ident) + " to 0x" + Long.toHexString(newIdent) + " while dispatching to " + msg.target.getClass().getName() + " " + msg.callback + " what=" + msg.what); } msg.recycle(); } }
loop每次从MessageQueue取出一个Message,调用msg.target.dispatchMessage(msg),target就是发送message时跟message关联的handler,这样就调用到了熟悉的dispatchMessage,Message被处理后会被recycle。当queue.next返回null时会退出消息循环,接下来就看一下MessageQueue.next是怎么取出消息的,又会在什么时候返回null。
final Message next() { int pendingIdleHandlerCount = -1; // -1 only during first iteration int nextPollTimeoutMillis = 0; for (;;) { if (nextPollTimeoutMillis != 0) { Binder.flushPendingCommands(); } nativePollOnce(mPtr, nextPollTimeoutMillis); synchronized (this) { if (mQuiting) { return null; } // Try to retrieve the next message. Return if found. final long now = SystemClock.uptimeMillis(); Message prevMsg = null; Message msg = mMessages; if (msg != null && msg.target == null) { // Stalled by a barrier. Find the next asynchronous message in the queue. do { prevMsg = msg; msg = msg.next; } while (msg != null && !msg.isAsynchronous()); } if (msg != null) { if (now < msg.when) { // Next message is not ready. Set a timeout to wake up when it is ready. nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE); } else { // Got a message. mBlocked = false; if (prevMsg != null) { prevMsg.next = msg.next; } else { mMessages = msg.next; } msg.next = null; if (false) Log.v("MessageQueue", "Returning message: " + msg); msg.markInUse(); return msg; } } else { // No more messages. nextPollTimeoutMillis = -1; } // If first time idle, then get the number of idlers to run. // Idle handles only run if the queue is empty or if the first message // in the queue (possibly a barrier) is due to be handled in the future. if (pendingIdleHandlerCount < 0 && (mMessages == null || now < mMessages.when)) { pendingIdleHandlerCount = mIdleHandlers.size(); } if (pendingIdleHandlerCount <= 0) { // No idle handlers to run. Loop and wait some more. mBlocked = true; continue; } if (mPendingIdleHandlers == null) { mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)]; } mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers); } // Run the idle handlers. // We only ever reach this code block during the first iteration. for (int i = 0; i < pendingIdleHandlerCount; i++) { final IdleHandler idler = mPendingIdleHandlers[i]; mPendingIdleHandlers[i] = null; // release the reference to the handler boolean keep = false; try { keep = idler.queueIdle(); } catch (Throwable t) { Log.wtf("MessageQueue", "IdleHandler threw exception", t); } if (!keep) { synchronized (this) { mIdleHandlers.remove(idler); } } } // Reset the idle handler count to 0 so we do not run them again. pendingIdleHandlerCount = 0; // While calling an idle handler, a new message could have been delivered // so go back and look again for a pending message without waiting. nextPollTimeoutMillis = 0; } }
MessageQueue.next首先会调用nativePollOnce,然后如果mQuiting为true就返回null,Looper就会退出消息循环。
接下来取消息队列头部的消息,如果头部消息是Barrier(target==null)就往后遍历找到第一个异步消息,接下来检测获取到的消息(消息队列头部的消息或者第一个异步消息),如果为null表示没有消息要执行,设置nextPollTimeoutMillis = -1;否则检测这个消息要执行的时间,如果到执行时间了就将这个消息markInUse并从消息队列移除,然后从next返回到loop;否则设置nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE),即距离最近要执行的消息还需要多久,无论是当前消息队列没有消息可以执行(设置了Barrier并且没有异步消息或消息队列为空)还是队列头部的消息未到执行时间,都会执行后面的代码,看有没有设置IdleHandler,如果有就运行IdleHandler,当IdleHandler被执行之后会设置nextPollTimeoutMillis = 0。
首先看一下nativePollOnce,native方法,调用JNI,最后调到了Native Looper::pollOnce,并从Java层传进去了nextPollTimeMillis,即Java层的消息队列中执行时间最近的消息还要多久到执行时间。
int Looper::pollOnce(int timeoutMillis, int* outFd, int* outEvents, void** outData) { int result = 0; for (;;) { while (mResponseIndex < mResponses.size()) { const Response& response = mResponses.itemAt(mResponseIndex++); int ident = response.request.ident; if (ident >= 0) { int fd = response.request.fd; int events = response.events; void* data = response.request.data; #if DEBUG_POLL_AND_WAKE ALOGD("%p ~ pollOnce - returning signalled identifier %d: " "fd=%d, events=0x%x, data=%p", this, ident, fd, events, data); #endif if (outFd != NULL) *outFd = fd; if (outEvents != NULL) *outEvents = events; if (outData != NULL) *outData = data; return ident; } } if (result != 0) { #if DEBUG_POLL_AND_WAKE ALOGD("%p ~ pollOnce - returning result %d", this, result); #endif if (outFd != NULL) *outFd = 0; if (outEvents != NULL) *outEvents = 0; if (outData != NULL) *outData = NULL; return result; } result = pollInner(timeoutMillis); } }
先不看开始的一大串代码,先看一下pollInner:
int Looper::pollInner(int timeoutMillis) { #if DEBUG_POLL_AND_WAKE ALOGD("%p ~ pollOnce - waiting: timeoutMillis=%d", this, timeoutMillis); #endif // Adjust the timeout based on when the next message is due. if (timeoutMillis != 0 && mNextMessageUptime != LLONG_MAX) { nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC); int messageTimeoutMillis = toMillisecondTimeoutDelay(now, mNextMessageUptime); if (messageTimeoutMillis >= 0 && (timeoutMillis < 0 || messageTimeoutMillis < timeoutMillis)) { timeoutMillis = messageTimeoutMillis; } #if DEBUG_POLL_AND_WAKE ALOGD("%p ~ pollOnce - next message in %lldns, adjusted timeout: timeoutMillis=%d", this, mNextMessageUptime - now, timeoutMillis); #endif } // Poll. int result = ALOOPER_POLL_WAKE; mResponses.clear(); mResponseIndex = 0; struct epoll_event eventItems[EPOLL_MAX_EVENTS]; int eventCount = epoll_wait(mEpollFd, eventItems, EPOLL_MAX_EVENTS, timeoutMillis); // Acquire lock. mLock.lock(); // Check for poll error. if (eventCount < 0) { if (errno == EINTR) { goto Done; } ALOGW("Poll failed with an unexpected error, errno=%d", errno); result = ALOOPER_POLL_ERROR; goto Done; } // Check for poll timeout. if (eventCount == 0) { #if DEBUG_POLL_AND_WAKE ALOGD("%p ~ pollOnce - timeout", this); #endif result = ALOOPER_POLL_TIMEOUT; goto Done; } // Handle all events. #if DEBUG_POLL_AND_WAKE ALOGD("%p ~ pollOnce - handling events from %d fds", this, eventCount); #endif for (int i = 0; i < eventCount; i++) { int fd = eventItems[i].data.fd; uint32_t epollEvents = eventItems[i].events; if (fd == mWakeReadPipeFd) { if (epollEvents & EPOLLIN) { awoken(); } else { ALOGW("Ignoring unexpected epoll events 0x%x on wake read pipe.", epollEvents); } } else { ssize_t requestIndex = mRequests.indexOfKey(fd); if (requestIndex >= 0) { int events = 0; if (epollEvents & EPOLLIN) events |= ALOOPER_EVENT_INPUT; if (epollEvents & EPOLLOUT) events |= ALOOPER_EVENT_OUTPUT; if (epollEvents & EPOLLERR) events |= ALOOPER_EVENT_ERROR; if (epollEvents & EPOLLHUP) events |= ALOOPER_EVENT_HANGUP; pushResponse(events, mRequests.valueAt(requestIndex)); } else { ALOGW("Ignoring unexpected epoll events 0x%x on fd %d that is " "no longer registered.", epollEvents, fd); } } } Done: ; // Invoke pending message callbacks. mNextMessageUptime = LLONG_MAX; while (mMessageEnvelopes.size() != 0) { nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC); const MessageEnvelope& messageEnvelope = mMessageEnvelopes.itemAt(0); if (messageEnvelope.uptime <= now) { // Remove the envelope from the list. // We keep a strong reference to the handler until the call to handleMessage // finishes. Then we drop it so that the handler can be deleted *before* // we reacquire our lock. { // obtain handler sp<MessageHandler> handler = messageEnvelope.handler; Message message = messageEnvelope.message; mMessageEnvelopes.removeAt(0); mSendingMessage = true; mLock.unlock(); #if DEBUG_POLL_AND_WAKE || DEBUG_CALLBACKS ALOGD("%p ~ pollOnce - sending message: handler=%p, what=%d", this, handler.get(), message.what); #endif handler->handleMessage(message); } // release handler mLock.lock(); mSendingMessage = false; result = ALOOPER_POLL_CALLBACK; } else { // The last message left at the head of the queue determines the next wakeup time. mNextMessageUptime = messageEnvelope.uptime; break; } } // Release lock. mLock.unlock(); // Invoke all response callbacks. for (size_t i = 0; i < mResponses.size(); i++) { Response& response = mResponses.editItemAt(i); if (response.request.ident == ALOOPER_POLL_CALLBACK) { int fd = response.request.fd; int events = response.events; void* data = response.request.data; #if DEBUG_POLL_AND_WAKE || DEBUG_CALLBACKS ALOGD("%p ~ pollOnce - invoking fd event callback %p: fd=%d, events=0x%x, data=%p", this, response.request.callback.get(), fd, events, data); #endif int callbackResult = response.request.callback->handleEvent(fd, events, data); if (callbackResult == 0) { removeFd(fd); } // Clear the callback reference in the response structure promptly because we // will not clear the response vector itself until the next poll. response.request.callback.clear(); result = ALOOPER_POLL_CALLBACK; } } return result; }
Java层的消息都保存在了Java层MessageQueue的成员mMessages中,Native层的消息都保存在了Native Looper的mMessageEnvelopes中,这就可以说有两个消息队列,而且都是按时间排列的。timeOutMillis表示Java层下个要执行的消息还要多久执行,mNextMessageUpdate表示Native层下个要执行的消息还要多久执行,如果timeOutMillis为0,epoll_wait不设置TimeOut直接返回;如果为-1说明Java层无消息直接用Native的time out;否则pollInner取这两个中的最小值作为timeOut调用epoll_wait。当epoll_wait返回时就可能有以下几种情况:
-
出错返回。
-
Time Out
-
正常返回,描述符上有事件产生。
如果是前两种情况直接goto DONE。
否则就说明FD上有事件发生了,如果是mWakeReadPipeFd的EPOLLIN事件就调用awoken,如果不是mWakeReadPipeFd,那就是通过addFD添加的fd,在addFD中将要监听的fd及其events,callback,data封装成了Request对象,并以fd为键保存到了KeyedVector mRequests中,所以在这里就以fd为键获得在addFD时关联的Request,并连同events通过pushResonse加入mResonse队列(Vector),Resonse仅是对events与Request的封装。如果是epoll_wait出错或timeout,就没有描述符上有事件,就不用执行这一段代码,所以直接goto DONE了。
void Looper::pushResponse(int events, const Request& request) { Response response; response.events = events; response.request = request; mResponses.push(response); }
接下来进入DONE部分,从mMessageEnvelopes取出头部的Native消息,如果到达了执行时间就调用它内部保存的MessageeHandler的handleMessage处理并从Native 消息队列移除,设置result为ALOOPER_POLL_CALLBACK,否则计算mNextMessageUptime表示Native消息队列下一次消息要执行的时间。如果未到头部消息的执行时间有可能是Java层消息队列消息的执行时间小于Native层消息队列头部消息的执行时间,到达了Java层消息的执行时间epoll_wait TimeOut返回了,或都通过addFd添加的描述符上有事件发生导致epoll_wait返回,或者epoll_wait是出错返回。Native消息是没有Barrier与Asynchronous的。
最后,遍历mResponses(前面刚通过pushResponse存进去的),如果response.request.ident == ALOOPER_POLL_CALLBACK,就调用注册的callback的handleEvent(fd, events, data)进行处理,然后从mResonses队列中移除,这次遍历完之后,mResponses中保留来来的就都是ident>=0并且callback为NULL的了。在NativeMessageQueue初始化Looper时传入了mAllowNonCallbacks为false,所以这次处理完后mResponses一定为空。
接下来返回到pollOnce。pollOnce是一个for循环,pollInner中处理了所有response.request.ident==ALOOPER_POLL_CALLBACK的Response,在第二次进入for循环后如果mResponses不为空就可以找到ident>0的Response,将其ident作为返回值返回由调用pollOnce的函数自己处理,在这里我们是在NativeMessageQueue中调用的Loope的pollOnce,没对返回值进行处理,而且mAllowNonCallbacks为false也就不可能进入这个循环。pollInner返回值不可能是0,或者说只可能是负数,所以pollOnce中的for循环只会执行两次,在第二次就返回了。
Native Looper可以单独使用,也有一个prepare函数,这时mAllowNonCallbakcs值可能为true,pollOnce中对mResponses的处理就有意义了。
wake与awoken
在Native Looper的构造函数中,通过pipe打开了一个管道,并用mWakeReadPipeFd与mWakeWritePipeFd分别保存了管道的读端与写端,然后用epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeReadPipeFd,& eventItem)监听了读端的EPOLLIN事件,在pollInner中通过epoll_wait(mEpollFd, eventItems, EPOLL_MAX_EVENTS, timeoutMillis)读取事件,那是在什么时候往mWakeWritePipeFd写,又是在什么时候读的mWakeReadPipeFd呢?
在Looper.cpp中我们可以发现如下两个函数:
void Looper::wake() { #if DEBUG_POLL_AND_WAKE ALOGD("%p ~ wake", this); #endif ssize_t nWrite; do { nWrite = write(mWakeWritePipeFd, "W", 1); } while (nWrite == -1 && errno == EINTR); if (nWrite != 1) { if (errno != EAGAIN) { ALOGW("Could not write wake signal, errno=%d", errno); } } } void Looper::awoken() { #if DEBUG_POLL_AND_WAKE ALOGD("%p ~ awoken", this); #endif char buffer[16]; ssize_t nRead; do { nRead = read(mWakeReadPipeFd, buffer, sizeof(buffer)); } while ((nRead == -1 && errno == EINTR) || nRead == sizeof(buffer)); }
wake函数向mWakeWritePipeFd写入了一个“W”字符,awoken从mWakeReadPipeFd读,往mWakeWritePipeFd写数据只是为了在pollInner中的epoll_wait可以监听到事件返回。在pollInner也可以看到如果是mWakeReadPipeFd的EPOLLIN事件只是调用了awoken消耗掉了写入的字符就往后处理了。
那什么时候调用wake呢?这个只要找到调用的地方分析一下就行了,先看Looper.cpp,在sendMessageAtTime即发送Native Message的时候,根据发送的Message的执行时间查找mMessageEnvelopes计算应该插入的位置,如果是在头部插入,就调用wake唤醒epoll_wait,因为在进入pollInner时根据Java层消息队列头部消息的执行时间与Native层消息队列头部消息的执行时间计算出了一个timeout,如果这个新消息是在头部插入,说明执行时间至少在上述两个消息中的一个之前,所以应该唤醒epoll_wait,epoll_wait返回后,检查Native消息队列,看头部消息即刚插入的消息是否到执行时间了,到了就执行,否则就可能需要设置新的timeout。同样在Java层的MessageQueue中,有一个函数nativeWake也同样可以通过JNI调用wake,调用nativeWake的时机与在Native调用wake的时机类似,在消息队列头部插入消息,还有一种情况就是,消息队列头部是一个Barrier,而且插入的消息是第一个异步消息。
if (p == null || when == 0 || when < p.when) { // New head, wake up the event queue if blocked. msg.next = p; mMessages = msg; needWake = mBlocked; } else { // Inserted within the middle of the queue. Usually we don't have to wake // up the event queue unless there is a barrier at the head of the queue // and the message is the earliest asynchronous message in the queue. needWake = mBlocked && p.target == null && msg.isAsynchronous();//如果头部是Barrier并且新消息是异步消息则“有可能”需要唤醒 Message prev; for (;;) { prev = p; p = p.next; if (p == null || when < p.when) { break; } if (needWake && p.isAsynchronous()) { // 消息队列中有异步消息并且执行时间在新消息之前,所以不需要唤醒。 needWake = false; } } msg.next = p; // invariant: p == prev.next prev.next = msg; }
在头部插入消息不一定调用nativeWake,因为之前可能正在执行IdleHandler,如果执行了IdleHandler,就在IdleHandler执行后把nextPollTimeoutMillis设置为0,下次进入for循环就用0调用nativePollOnce,不需要wake,只有在没有消息可以执行(消息队列为空或没到执行时间)并且没有设置IdleHandler时mBlocked才会为true。
如果Java层的消息队列被Barrier Block住了并且当前插入的是一个异步消息有可能需要唤醒Looper,因为异步消息可以在Barrier下执行,但是这个异步消息一定要是执行时间最早的异步消息。
退出Looper也需要wake,removeSyncBarrier时也可能需要。
发表评论 取消回复